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Abstract

This work focuses on instability mechanisms of high-speed boundary layers over
flat plates and cones with a circular cross section. Supersonic transition investiga-
tions at Mach 2 and hypersonic transition investigations at Mach 8 are performed
using Direct Numerical Simulations (DNS). At wind-tunnel conditions, these simu-
lations allow for comparison with experimental measurements to verify fundamental
stability characteristics. For the DNS of boundary-layer transition at Mach 2, the
experimental studies by Kosinov et al. (1994) and Ermolaev et al. (1996) for a flat
plate serve as reference and provide the physical conditions for the numerical setup.
In these experiments, the weakly nonlinear regime of transition was studied resulting
in the discovery of asymmetric subharmonic resonance triads. Scrutinizing the exper-
imental data, reveals however the presence of another, possibly competing breakdown
mechanism, in the experiments. Both mechanisms were addressed in detail in this
work.

To better understand geometrical influences, flat-plate and cylindrical geometries
are studied under after-shock conditions of the conical investigations (experiments).
This allows for a direct comparison with the results of the sharp cone to evaluate the
influence of spanwise curvature and cone opening angle. The ratio of the boundary
layer thickness to the spanwise radius is used to determine the importance of spanwise
curvature effects. For a cone, in downstream direction the radius increases linearly
while the boundary layer thickness stays almost constant. Hence, spanwise curvature
effects are strongest close to the nose tip and decrease in downstream direction. Their
influences on the secondary instability mechanisms provide some preliminary guidance
in the design for future high-speed air vehicles.

In experiments, blunting of the nose tip of the circular cone results in an increase
in critical Reynolds number (c.f. Stetson et al. (1984)). However, once a certain
threshold is exceeded, the critical Reynolds number decreases even to lower values

than for the sharp cone. Conclusive answers could not be obtained based on the
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available experimental data. Therefore, DNS are used to study the effect of nose
bluntness on secondary instability mechanisms to shed light on the underlying flow
physics. To this end, three different nose radii are considered — a sharp cone, a
small nose radius and a large nose radius. A small nose radius moves the transition
on-set downstream, while for a large nose radius the so-called transition reversal is
observed. Experimentalists link the different stability behavior resulting from the
different nose radii to the entropy layer. Detailed numerical studies allow for an

alternate conclusion.
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1. Introduction

1.1 Motivation

The sonic boom is a firm indicator for the change in flow physics when passing Ma = 1.
With that, the design concepts of air vehicles change drastically at supersonic speeds.
Aircrafts traveling at low supersonic speeds have sharp edges and noses in order
to reduce the wave drag of shocks. Advancing to hypersonic speeds, thermal loads
become increasingly dominant over the wave drag. Since the heat transfer is inverse
proportional to the radius (quau = \/ﬁ), air vehicles are designed with large radii
to protect the fuselage from over-heating.

In principal, transition to turbulence plays a key factor of the aerodynamic per-
formance of a vehicle. For supersonic and hypersonic flows, transition is additionally
associated with an increasing heat transfer to the vehicle. Usually the heat loads
during transition exceed the heat transfer of even fully turbulent flows. Therefore,
understanding the stability behavior of high-speed boundary layers is essential for the
design of the vehicle and the successful operation during its missions. The exploitation
of instability mechanisms can delay the transition process and reduce associated heat
loads, therefore enhancing the performance of the vehicle and reduce weight penalties
for the thermal protection system (7'PS). Especially at high Mach numbers, the
reduction of the aerothermal loads may result in a significant weight reduction, thus
increasing the payload of the air vehicle.

The flow over cones with circular and elliptical cross-sections is an important step
towards the modeling of real vehicle geometries. Nose sections of vehicles traveling
at supersonic speeds are similar in shape to circular cones. Thus understanding the
governing flow physics for this geometry helps improve real-scale vehicle performance.

Although significant progress has been made in recent years, crucial aspects of

transition physics are still not well understood. The lack of insight into the physical
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mechanisms of the transition processes in supersonic and hypersonic boundary-layer
flows is a major obstruction in developing reliable transition prediction methods. In
this study, Direct Numerical Simulations (DN S) are used to elaborate the influences
of nose radii and spanwise curvature on the hypersonic transition process. These
simulations have the advantages of being highly accurate and cost efficient compared
with experiments. Despite the fact that the complex flow structure of compressible
boundary-layer flows still challenges today’s supercomputers, DN S help identify vi-
able paths to transition and will narrow the gap between simulations and real-life
applications.

For comparison and validation purposes, other approaches to stability investi-
gations are introduced in the next two sections before secondary instabilities are

discussed and experimental and computational efforts are summarized.

1.2 Transition Process and Breakdown Scenarios

Classically, the transition process depicted in Figure 1.1 can be divided into five
stages:

I. Receptivity:

e Disturbances from surroundings penetrate the boundary layer.
II. Linear region:

e Amplitudes of these disturbances grow exponentially.
II1. Secondary instability:

e Once finite amplitude are reached, higher modes are generated nonlinearly and

flow becomes increasingly three-dimensional.

e Lambda vortices with peak and valley stations are formed through streamwise

vortices with higher amplification at the peak station.
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IV. Tertiary instability:

e Hairpin vortices evolve from the lambda vortices whose heads start to break up

into smaller structures.
e Turbulent spots are generated.
V. Turbulent region:

e Agglomeration/Merging of turbulent spots form fully turbulent region.

Figure 1.1: Stages of the transition process (side and top view).

The transition process is non-unique and does not necessarily involve all of the above
mentioned stages (bypass transition). Because Mach number has stabilizing effects,

hypersonic boundary layers are very stable. This work concentrates on the nonlinear
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regime of transition to identify scenarios which cause the final breakdown. Therefore,
a composition of known (secondary) instability mechanisms follows. Herbert (1988)
summarizes the secondary instabilities of incompressible boundary layers— K-type,
C-type and N-/H-type. He investigated secondary instabilities by the Floquet analysis
and compared his findings with experiments.

Secondary instabilities occur when waves travel at the same phase speeds thus
enabling energy transfer from the primary to the secondary waves which results in
rapid growth of the secondary waves and eventually in breakdown to turbulence.

The different scenarios are:

K-type: Klebanoff et al. (1962) discovered this instability in their flat-plate ex-
periments. A finitc amplitude two-dimensional Tollmien-Schlichting (7'S) wave inter-
acts with a steady streamwise vortex generated by spanwise spacers. Small (linear)
amplitude three-dimensional waves at the same frequency as the primary wave (fun-
damental breakdown) emerge through nonlinear interactions. The finite amplitude
of the primary wave is responsible for a phase locking with the secondary (gener-
ated) waves and therefore enabling this resonance. This breakdown results in aligned
streamwise A-vortices producing a peak-valley formation in spanwise direction with
similar wavelength than the two-dimensional fundamental wave A\, =~ A,.

C-type: Craik (1971) investigated a resonant triad where all three waves involved
travel at the same phase speed. The two-dimensional fundamental wave has twice the
frequency of the two secondary oblique (subharmonic) waves. To achieve equality of
the phase speed the oblique waves travel at a specific wave angle (A sush = 2Az fund)-
It is not necessary for the two-dimensional fundamental waves to reach finite am-
plitudes in order to transfer energy to the oblique waves, thus causing early rapid
amplification. Because there exists only one specific wave triad for each frequency of
the primary waves, this resonance is not as robust as the N-/H-type breakdown.

N-type or H-type: In a subharmonic breakdown, a finite amplitude two-dimensional

wave leads to a resonance with a small (linear) amplitude three-dimensional wave with
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half the frequency of the two-dimensional (primary) wave. These secondary oblique
waves travel at different wave angles as in a C-type breakdown making the C-type a
special case of the N-/H-type secondary instability. The flow field shows staggered
streamwise A-vortices with a spanwise wavelength half of the streamwise wavelength
of the fundamental wave (2), = A;). Experiments by Kachanov & Levchenko (1984)
and theoretical work by Herbert (1984) revealed the associated spanwise variations of
the subharmonic disturbance waves. For an incompressible flat-plate boundary layer,
the subharmonic breakdown is usually a stronger mechanism than a fundamental
(K-type) breakdown, despite the fact that it has been discovered over 20 years later.

Oblique Breakdown: In his numerical investigations of supersonic flows, Thumm

(1991) first discovered this mechanism which is not a secondary instability in the
common sense. A pair of oblique waves traveling with the same wave angle in oppo-
site directions relative to the flow (W) generate a pair of steady streamwise vortices.
These vortices interact with the primary disturbance waves again causing rapid am-
plification of nonlinearly generated waves. The oblique breakdown works especially
well when three-dimensional waves are more unstable than two-dimensional waves
which is the case at low supersonic Mach numbers (Ma < 4).

Oblique Subharmonic Resonance: This secondary instability is a generalization of

a C-type breakdown where the fundamental waves are also oblique. Therefore, the
primary and the two subharmonic waves all travel at different wave angles in order
to form a wave triad. This breakdown was observed in experiments performed by
Kosinov et al. (1994). As for the oblique breakdown, this resonance works best at
low supersonic Mach numbers since the eigenbehavior of the waves further support
this breakdown.

Oblique Fundamental Resonance: Just as the oblique subharmonic resonance is a

generalization of a C-type breakdown, the oblique fundamental resonance is a gen-
eralization of a K-type resonance where the primary and the secondary waves are

three-dimensional. Both waves involved possess the same frequency but travel at
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different wave angles. As for the K-type, steady streamwise vortices are generated
through first-order interactions. So far, only minor attention was drawn to this kind

of breakdown.

1.3 Common Methods for Stability Investigations

1.3.1 Linear Stability Theory

For his extensive numerical investigations, Mack (1984) split the total flow into a
steady (base) flow and an unsteady disturbance flow. He then linearized the equations
and applied the normal-mode approach for disturbance waves which assumes the

amplitude to only vary in wall-normal direction:
b= qg(y)ei(ax+ﬁz—wt) ) (11)

Because the amplitude is not allowed to vary in z-direction, a so-called local flow
analysis (parallel-flow assumption) is accomplished. Further simplification of the
governing equations is possible if one of the dissipation terms of the energy equation’
is set to zero thus decoupling the energy equation from the z-momentum equation.
The result is a system of six (instead of eight) first order ODFEs. He justified this step
by comparison of the results obtained with both eighth order and sixth order systems
and concluded that the error of the sixth order system of about 14% is acceptable
due to a tremendous reduction in computation time when compared with results of

the eighth order system.

1.3.1.1 Inviscid Theory

In contrast to incompressible flow, the compressible boundary layer may be unstable

to inviscid disturbances due to a generalized inflection point where

1_2 dw _ gdu) sdw’ _
a7+ (O‘dy ﬁdy)ady_o
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within the boundary layer. The distance from the wall of the generalized inflection
point is denoted y, and the local speed of the fluid is labelled c;.

When the velocity of the flow within the boundary layer is the speed of sound
slower than the free-stream velocity, the derived equations become singular. This
so-called critical layer appears at the wall-normal location yo where the speed of the
flow is ¢g = 1 — 1/Ma (Note: yo and ¢y are both functions of the downstream direc-
tion). Whenever y; > yo, the supersonic boundary layer flow is unstable to inviscid
(subsonic) disturbances. This inviscid instability becomes stronger with increasing
Mach number.

According to Lees and Lin (c.f. Mack (1984), page 3-35), disturbance waves are

classified by their speed relative to the free-stream velocity:

» supersonic disturbance c¢< 1 — Mi
a

generalized
» sonic disturbance pe=Tead " inflection

Ma
point profiles

increase in speed

» subsonic disturbance c>1- ﬁ

» regular disturbance l<e<1+ ;’,—‘; | no inflection point

It should be noted that generally the most important waves with respect to the
stability of a compressible boundary layer are subsonic disturbances. Exceptions, e.g.
in the presence of strong wall cooling where amplified disturbance waves are found in
the regular disturbance family, are discussed later in this section. -

When a relative Mach number (M = (aU + W — w) Ma/ (m)) is
introduced and large wave numbers considered the simplified compressible Rayleigh

equation
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shows that an infinite number of solutions exist if M > 1. The only requirements
for these higher modes to exist is a relative supersonic flow region within the boundary
layer. This relative supersonic flow appears when Ma > 2.2 in the inviscid theory
(Re — 00). The higher modes are also called Mack modes because Mack (1965)
was the first to discover their importance in the stability behavior of supersonic
flows, although Lees & Reshotko (1962) mention their possible existence earlier. The
most important Mack mode for Mach number up to ten is the second mode. First
and higher modes can be best distinguished by the number of phase shifts of their
pressure eigenfunction (number of zero crossings in their amplitude distribution). The
mode under consideration shows one null less than its mode number—so the pressure
amplitude eigenfunction of a first-mode disturbance wave has no zeros and the second
mode has one.

For an insulated wall, amplified first modes travel with a phase velocity between
¢o and ¢,. For three-dimensional (first-mode) waves traveling with a wave angle U,
the flow properties in direction of the wave are important—thus cgp = csop cosV¥
and cosp = (cosV — 1/Ma). Therefore, larger wave angles ¥ increase the difference
between ¢ and ¢y up to an optimum, and three-dimensional first-mode waves are
destabilized (Note: the optimal wave angle is a function of Mach number). Three-
dimensional higher mode waves are more stable than two-dimensional higher mode
waves so that at low supersonic speeds three-dimensional first-mode waves are most
unstable while, at higher Mach numbers, two-dimensional second-mode waves are
most amplified. This statement is generally valid although exceptions are possible in
both cases.

When the wall is moderately cooled, a second inflection point appears below the
critical layer and does therefore not introduce an additional instability. With in-
creased cooling the second inflection point is moving upward, cancelling the general-
ized inflection point and thus totally stabilizing first-mode waves. At the same time

higher modes which travel with a higher velocity than the free stream (regular dis-
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turbance waves) are destabilized. No general stability tendency of wall cooling can
therefore be observed and its effect on the transition process has to be examined for

each case separately.

1.3.1.2 Viscous Theory

Going to finite Reynolds numbers, i.e. accounting for viscous effects, increases the
Mach number when higher modes first appear. Typically, the second mode emerges
at Ma ~ 4 under wind-tunnel conditions. Another important difference to the in-
viscid theory is that the first and higher mode waves are not distinguished waves
any longer. In the viscous theory, all waves traveling with ¢ < 1, i.e. supersonic,
sonic, and subsonic disturbances are linear independent to the regular disturbance
waves traveling at ¢ > 1. Nonetheless, the viscous stability behavior of a compress-
ible boundary layer is basically governed by subsonic waves as in inviscid theory.
Within that category, waves behave like first-mode or higher-mode waves depending
on the flow parameters. Mack (1984) calls these waves “the viscous counterpart of
an inviscid first mode wave” (or inviscid higher mode). In order not to unnecessarily
complicate the manner, the viscous counterparts are still called first mode or higher
modes in this report-knowing that it is the same wave with different characteristics.

For an insulated wall, first-mode waves of low supersonic Mach numbers (Ma < 2)
experience a viscous instability, i.e. waves are more amplified than according to the
inviscid theory. But with increasing Mach number, viscosity only acts to damp the
inviscid instability of waves (caused by the generalized inflection point). Viscous
dissipation increases with increasing wave number a and decreasing local Reynolds
number R,. Therefore, all higher modes are stabilized by viscous effects.

The effects of wall cooling for finite Reynolds numbers show similar behavior as in
the inviscid theory. Thus, first modes are fully stabilized by eliminating the inflection

point through strong wall cooling.
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1.3.2 Parabolized Stability Equations

Since computations and experiments are compared to results obtained by the Parab-
olized Stability Equations (PSE), a brief overview is given here. For a more detailed
description, the reader is referred to Chang & Malik (1993a). First, one distinguishes
between linear and nonlinear PSFE. In comparison to LST, linear and also non-linear
PSE has the major advantage that influences of the growing boundary layer are
considered (no parallel-flow assumption). Additionally for nonlinear PSE, a limited
amount of nonlinear interactions of waves are allowed.

In order to include non-parallel and nonlinear effects, PSFE uses a multiple-scale
approach to decompose a disturbance in streamwise direction into a wave-like part
(varying wave number) and a shape function (varying amplitude function ¢(z, v)).

M N

0= 35 5 duteeliemacninn

m=—M n=—
Plugging this approach into the governing equations, with neglecting second-order
derivatives (e.g. g;‘z—’) and multiplications of first-order derivatives (e.g. g—:%) in the
streamwise direction, eliminates the elliptic nature of the equations— they are parab-
olized. By eliminating the elliptic character no information can be passed upstream
anymore and these equations are therefore only capable of calculating convective in-
stabilities. Because non-parallel and nonlinear effects are not neglected, transition
on-set and the early stages of transition can be computed in very good agreement
with experimental results. Hence, PSE is a powerful tool for investigating the early
stages of transition but performs less good in predicting flow behaviors in the later

stages of the breakdown process.
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1.3.3 Temporal Direct Numerical Simulations

In the wave equation (eq 1.1), a@ and w are generally complex. The real parts a.
and w, are the wave number and frequency, respectively. The imaginary parts both
describe the amplification of the wave, i.e. «; is the spatial while w; is the tempo-
ral amplification. For the spatial approach, which is mainly used in this work, «
is complex and w is real. To discuss possible resonances of disturbance waves, in-
vestigations are also performed with a temporal DNS. In the temporal simulations,
only one streamwise wavelength is computed. The resulting computational domain is
graphed in Figure 1.2. Because of its small streamwise extent the flow variables are
assumed to be constant in that direction. Hence, the base-flow profile and with that
the boundary-layer thickness, does not change and periodicity is assumed (parallel
flow assumption, as in LST). The computational domain travels with the wave speed
and therefore, the wave becomes stationary within the reference frame. Based on this
approach, temporal amplification can be computed and related to spatial amplifica-
tion rates with the transformation by Gaster (1962). For a more detailed description
of the temporal approach, please refer to Marxen (1998). Balzer (2003) describes the

temporal code used for the investigations of conical geometries.

Figure 1.2: Computational domain for temporal DNS (taken from Balzer (2003)).



44

1.4 Earlier Investigations of High-Speed Boundary-Layer Stability

1.4.1 Experimental Efforts
1.4.1.1 Flat-Plate and Swept-Wing Geometry

At the Institute of Theoretical and Applied Mechanics in Novosibirsk, Russia, con-
trolled experiments of flow over a flat plate at Ma = 2 were investigated. These
controlled experiments, meaning that disturbances are introduced by a generator at
specific frequencies (here via a spark discharge), were performed by Kosinov et al.
(1994). Their main finding is that a resonance of oblique subharmonic waves exists.
Theoretical work of Kosinov & Tumin (1996) confirmed this result. Ermolaev et al.
(1996) used a larger subharmonic amplitude than Kosinov et al. (1994) resulting in
a slightly different wave triad—possibly not caused by the amplitude but by a phase
difference in their disturbance signal (c.f. Mayer & Fasel (2008)). They measured an
asymmetric spectra in spanwise direction which could not be theoretically verified. So
Ermolaev et al. (1996) speculated that this asymmetry is connected to the generation
of subharmonic two-dimensional sound waves.

Brown & Graziosi (2002) investigated the disturbance development within a flat-
plate boundary layer at Mach 3. They elaborated only the linear stages of transition
caused by natural disturbances, i.e. noise radiated from the free stream into the
boundary layer. The initial stages of transition were generally confirmed by LST.
Graziosi (1999) claimed that first-mode unstable waves are sonic wave disturbances
and play therefore a main role in the transition process. Therefore, follow-up ex-
periments (Brown & Fan (2003)) with controlled disturbances which are introduced
through a loudspeaker upstream of the wind-tunnel nozzle are used to investigate
the receptivity of the boundary layer to sound-wave disturbances. The experiments
revealed that disturbance waves in the free stream travel initially in phase with the

generated disturbance waves in the boundary layer. At a later time (at the same
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location), a phase shift between waves in the free stream and in the boundary layer
became apparent.

When three-dimensional boundary layers are considered, so-called cross-flow in-
stabilities govern the stability of the flow. To investigate these cross-flow instabilities,
swept-wings, rotating disks, and elliptical cones are common geometries. In the fa-
cility in Novosibirsk, Levchenko et al. (1996) found formations of steady streamwise
vortices caused by the cross-flow instability of an infinite swept wing at Ma = 2.
Saric & Reed (2002) investigated the cross-flow instability of a swept wing at Mach
2.4. They were successful in delaying transition by placing distributed roughnesses
close to the leading edges in order to weaken the cross-flow instability. Therefore, it
is concluded that steady vortices are an efficient mechanism in controlling cross-flow

instabilities.

1.4.1.2 Cone Geometries

Circular Cone

Most experiments of conical geometries are performed in the hypersonic Mach
number range of Ma = 6 to Ma = 8 before the shock. An exemption are the exper-
iments of Corke et al. (2002) who also found an oblique subharmonic resonance, as
Kosinov et al. (1994) did for a flat plate at Ma = 2, for a slender cone at Mach 3.5.
Laddon & Schneider (1998) analyzed the stability behavior of controlled disturbances
(introduced via a glow discharge) in a flow over a circular cone for small angles of
attack at Ma = 4. They measured a phase speed of 0.9 times the free-stream ve-
locity and saw the maximum rms-amplitude values built up at the outer part of the
boundary layer— both indications that a second-mode instability is present. They
speculated that although amplitude growth was significant the disturbance amplitude
of the glow discharge was too small in order to cause transition.

The best documented and most detailed experiments of a circular cone geometry
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are probably those of Stetson et al. (1983) and Stetson & Kimmel (1992). They inves-
tigated the influences of nose radius, wall temperature, angle of attack, unit Reynolds
number, Mach number, and transverse curvature. Independent of these factors, higher
harmonics of the most amplified wave developed. In their early experiments, Stetson
et al. (1983) focused on the sharp cone at Mach 8 at one unit Reynolds number. The
principle instability was identified as a two-dimensional second-mode wave which is
selective to a specific disturbance frequency. The wavelength of this frequency relates
to the boundary-layer thickness (A, = 2 - §). Since the boundary-layer thickness is
almost constant for this cone configuration, the most amplified frequency does not
vary as much in downstream direction as it does e.g. for the flat plate. Measured
rms-amplitudes grow close to the boundary layer edge and stay at about noise level
at the inner part of the boundary layer close to the wall. Far downstream these
second-mode disturbance waves decay and first-mode waves grow again leading to
the conclusion that transition on-set has occurred.

Nose Bluntness: In later experiments, Stetson et al. (1984) showed that a small

nose-tip bluntness can completely control the stability behavior of the hypersonic
boundary layer, i.e. a small bluntness delays transition while larger nose radii enhance
transition compared to the sharp cone. So he hypothesized that the stability behavior
at the frustum of the cone is governed by the entropy layer and the boundary-layer
edge properties because once the entropy layer was “swallowed” by the boundary
layer, disturbances rapidly amplified again. Stetson (1979) named the reduction in
unit Reynolds number due to total pressure losses over the normal-shock region the
main reason for the downstream movement of the transition location for a small to
moderate nose bluntness. For larger nose radii transition occurred in the subsonic
region of the boundary layer and transition moved forward again.

Wall Temperature: Because second-mode disturbance waves are dominant, a de-

crease in wall temperature increases the amplification of these waves and reduces the

critical Reynolds number.
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Angle of Attack: The transition point on the windward site of the cone was found

to move rearward and forward on the leeward site. The forward movement of the
transition on-set can be explained by a cross-flow instability. However, the major
effect of an angle of attack was on the location of the amplification of a second-mode
disturbance but not on the amplification rate itself.

Unit Reynolds number: The experimental data revealed a linear correlation of

unit Reynolds number and the amplification rate of a second-mode disturbance. Thus,
for a particular downstream location based on local Reynolds number, the amplifica-
tion rate was twice as high if the unit Reynolds number was doubled.

Mach number: Comparison of the collected data at Mach 8 with data at Mach 6
showed basically the same stability behavior in both cases.

Transverse curvature: Quiet wind-tunnel data support the numerical results of

LST that the location of a second-mode disturbance is somewhat farther upstream
but the amplification rate is lower for a compressible flat-plate boundary layer com-
pared to conical flows. The reason for such a behavior lies in the above mentioned
selectivity of the frequency of the conical boundary layer so that overall a second-mode
instability is emphasized for flow over cones.

Bountin et al. (2004) and Shiplyuk et al. (2003) analyzed the flow around a circular
cone with a porous wall. They concentrated their work on mode interactions through
the bispectral method and found that a subharmonic resonance of two-dimensional
waves with three-dimensional waves is possible. In addition, they emphasized the im-
portance of first-mode oblique waves alone in the breakdown process— like breakdown
scenarios with oblique primary waves.

Flared Cone

On a flared cone the radius increases quadratically in the downstream direction,
usually after a linear portion along the nose section of the cone (as on a conven-
tional cone). Associated with the resulting concave curvature are Gortler vortices

and adverse pressure gradients.
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At the NASA Langley Research Center, the flared cone at Ma = 6 was analyzed
by a group of researchers around Chokani. Lachowicz et al. (1996) found that second-
mode two-dimensional waves dominate the transition process while higher harmonics
are unrelated to the free-stream disturbance levels— further undermining the results
of Stetson et al. (1983). Doggett et al. (1997) saw the same trends for a flared cone
at an angle of attack as for the conventional cone, i.e. the leeward side became
more unstable and the windward side was stabilized compared to a cone at a zero
degree angle of attack. From 1999 through 2002, Chokani (1999), Chokani (2000a),
Chokani (200006), Norris & Chokani (2001), and Norris & Chokani (2002) emphasized
their experimental efforts on the identification of nonlinear interactions leading to
transition. They claimed a subharmonic resonance of a two-dimensional second-
mode wave with three-dimensional first-mode waves responsible for boundary layer
transition.

Horvath (2002) investigated both cone geometries, the conventional slender cone
and a flared cone. He postulated that the adverse pressure gradient instead of Gortler
vortices is the main driving force for higher amplification rates of second-mode dis-
turbances over the flared cone. Hence, the breakdown mechanisms involving two-
dimensional waves are emphasized for the flared cone compared to flow over cones
without streamwise curvature.

Elliptical Cone

Kimmel et al. (1999) investigated the three-dimensional boundary-layer flow over
a cone with elliptical cross-section (ratio 2:1) at Mach 8. Their measurements revealed
that inflection-point profiles are present close to the centerline where the boundary
layer is also significantly thicker than away from the centerline. With the laminar
state of the flow already very complex, they could only speculate that transition at
the centerline is caused by the inflection point while close to the shoulder of the cone
transition is induced by cross-flow instabilities. The instability of the inflectional

boundary layer seemed to be stronger than the instability of the cross flow so that
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transition occurred first at the centerline and farther downstream at the shoulder of
the cone. Continuing work of Poggie et al. (2000) revealed second-mode disturbance
waves close to the centerline of the elliptical cone. It remained unclear if disturbances
caused by cross flow or first-mode waves are present at the shoulder of the cone.
According to Poggie et al. (2000), a minor identification which favors the presence of
cross-flow instabilities is that the measured wavelength was rather short. Because the
group velocity vector of leading-edge disturbances did not deviate more than 1 degree
off the edge velocity vector, they hypothesized that oblique leading edge disturbances
do not play an important role in the stability behavior at the shoulder of the cone.
Although the amplitudes under investigation were too high for a receptivity study,
Schmisseur et al. (2002) saw a response to thermal disturbances generated by a laser
placed in the free stream close to the shoulder of their 4:1 elliptic cone at Ma = 4.

Future research remains to clarify more specific issue of their stability experiments.

1.4.2 Computational Efforts
1.4.2.1 Flat-Plate and Swept-Wing Geometry

Since the early 90’s, when Thumm (1991) discovered the oblique breakdown for a su-
personic boundary layer at Mach 1.6, simulations performed by several investigators,
see for example Bestek & Eifller (1996), Chang & Malik (1994), Fasel et al. (1993)
or Mayer (2004), also showed that this breakdown of two oblique waves with the
same wave angle (£V) is a strong mechanism in the on-set of transition for various
Mach numbers and flow parameters. Unfortunately, this breakdown lacks experimen-
tal verification so far, although Mayer et al. (2007) has strong indications of a possible
oblique breakdown in the experimental measurements of Ermolaev et al. (1996).
Eifller (1995) performed computations under wind-tunnel, so-called “cold”, con-
ditions and free-flight, so-called “hot”, conditions with an adiabatic, isothermal, and

radiation-cooled wall and was therefore capable of determining realistic heat loads on
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the wall during transition. His simulations with an adiabatic and radiation-cooled
wall revealed that the oblique breakdown is the strongest mechanism for “cold” con-
ditions at Ma = 4.8. With the same wall behaviors but under atmospheric (“hot”)
conditions, two-dimensional second-mode waves were strongly amplified. For a fun-
damental breakdown (K-type) secondary three-dimensional waves showed relevant
amplitudes level only far downstream and a N-/H-type subharmonic resonance could
not be found. Due to the computer power at that time, he was unable to simulate
K-type or N-/H-type breakdown scenarios with an isothermal wall. It is our hy-
pothesis that the second-mode waves were highly destabilized (as predicted by LST)
and early transition occurred. Therefore, he summarized that the oblique breakdown
for an adiabatic flat-plate boundary layer is the strongest mechanism within his in-
vestigated scope of parameters—despite the strong amplification of two-dimensional
second-mode waves.

Theoretical work of Tumin (1996) and Terekhova (2003) analyzed the experiments
of the oblique subharmonic breakdown by Kosinov et al. (1994). Tumin (1996) used
50 wave packets in a locally parallel flow uniformly spaced in spanwise direction and
found good qualitative agreement to the experiments. Based on his findings, he con-
cluded that a subharmonic resonance is responsible for the stability behavior of the
flow. Terekhova (2003) investigated the nonlinear interactions with seven waves—
only considering first-order interactions. She found that there are strong interactions
between the fundamental waves (traveling at +W) generating a two-dimensional wave
(Remark: as in the oblique breakdown), but also stated that the first-order interac-
tions are not the main process in the energy re-distribution among waves. Husmeier
et al. (2005) transferred the subharmonic oblique breakdown to Mach 3 flow con-
ditions matching the experimental setup of Brown & Graziosi (2002). But due to
the arising flow structures and instability mode behavior, they concluded that, al-
though possible, an oblique breakdown was overlaying the subharmonic resonance.

They also investigated K- and N-/H-type breakdown scenarios but because of the
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high disturbance amplitudes necessary at the disturbance slot, their conclusion was
that the oblique breakdown is the strongest mechanism under those conditions. With
his numerical efforts, Zengl (2005) focused on the oblique subharmonic resonance of
Kosinov et al. (1994) under the conditions of Brown & Graziosi (2002). His simula-
tions showed that only two waves, i.e. one primary and one secondary wave pair, need
to be disturbed while the third wave closing the triad is automatically generated and
amplified through nonlinear interactions. Therefore, the oblique subharmonic insta-
bility is strongest when both, primary and secondary, waves are perturbed with equal
amplitudes. In this case, the oblique subharmonic breakdown shows competitive
performance to the oblique breakdown.

Chang et al. (1995) investigated the stability behavior of a three-dimensional
boundary layer by performing a PSE analysis of flow over a swept cylinder at Ma =
3.5. Stationary cross-flow vortices evolved with unsteady (high-frequency) cross-flow
disturbances residing on top of these structures. Because of the very high frequency of
these disturbances they speculated that traveling cross-flow instabilities rather than
an instability of the steady vortices are more likely to govern the stability behavior.
Similar results saw Kloker (2002) for an incompressible swept-wing geometry. He
related the unsteady cross-flow disturbances to the free-stream turbulence level. At

low free-stream turbulence levels stationary cross-flow vortices prevailed.

1.4.2.2 Cone Geometries

Circular Cone

Theoretical work by Seddougui & Bassom (1997) who investigated the linear sta-
bility behavior of flow over cones following the triple-deck-formulation, revealed the
importance of the shock location relative to the cone radius. Only looking at viscous
modes they stated that inviscid instabilities might alter their findings. Seddougui &

Bassom (1997) revealed that with increasing radius, i.e. moving in downstream direc-
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tion, first-mode waves are higher amplified than higher-mode waves— a phenomenon
already observed by Stetson et al. (1983) in their experiments. Additionally, Sed-
dougui & Bassom (1997) stated that with the shock moving away from the cone
surface amplification rates generally drop and axisymmetric waves are more unstable
than oblique waves.

Using DN S and PSE, Pruett et al. (1995) investigated a second-mode three- di-
mensional linear disturbance under the conditions of Stetson et al. (1983). Comparing
DNS with PSFE results showed good agreement. Pruett et al. (1995) recognized an
extreme sensitivity of the stability behavior of high-speed boundary layer flows to
changes in the base-flow profiles. Therefore, Pruett (1993) concentrated on the in-
fluence of the wall-normal gradients of the flow variables within the boundary layer.
In a second part, Pruett & Chang (1995) investigated breakdown scenarios in more
detail. They found that subharmonic resonances (N-/H-type) are an unlikely path to
turbulence since the downstream extent of the instability region of two-dimensional
waves is too short. Instead, they claimed a second-mode oblique breakdown with
arising steady vortices responsible for transition. These structures having a signifi-
cant impact on the stability behavior formed closed to the critical layer. Robarge &
Schneider (2005) linked the sensitivity of the stability behavior of the boundary layer,
as seen by Pruett et al. (1995), to changes in the viscosity. Thus, they observed a
large scatter in computed amplification rates although the location of the instability
region was in good agreement when compared with PSFE results. Fezer & Kloker
(2004) also investigated the same cone geometry as used in the experiments by Stet-
son et al. (1983) but under atmospheric conditions, i.e. a “hot” approach flow, and
with a radiation-cooled wall. A fundamental resonance (K-type) with accompanying
hot streaks along the wall initiated transition in that case. The high temperature
streaks along the wall resulted from vortex structures which built up during this
breakdown. Zhong (2005) analyzed three different nose radii under Stetson’s experi-

mental conditions (c.f. Stetson et al. (1984)). Zhong (2005) observed a shift to lower
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dominant frequencies with increasing bluntness due to a thickening boundary layer.
But as reported by Stetson & Kimmel (1992), Zhong (2005) was unable to find an
instability reversal, i.e. in his simulations the critical Reynolds number increased
monotonically with increasing nose radius. In the experiments of Stetson & Kimmel
(1992) a decrease in critical Reynolds number followed the initial increase so that
there was an optimal nose radius regarding transition delay in the their experiments.

In all cases mentioned above, the authors were unable to draw conclusions on
why the observed instabilities prevailed over other mechanisms and what role the
boundary and flow conditions play in influencing these scenarios.

Flared Cone

Pruett & Chang (1998) continued their transition investigation by analyzing the
flared cone geometry at Ma = 6. Due to the flared region on the cone, the boundary
layer thickness decreases and the dominating disturbance frequencies increase. As
observed by Stetson et al. (1983), they were able to link the wavelength of the most
important frequency to about twice the boundary-layer thickness. For a flared cone,
flow structures developed close to the wall and upstream of those on the circular cone
(c.f. Pruett & Chang (1995)). Generally, Pruett & Chang (1998) saw the transi-
tion on-set appearing earlier but developing more gradually in downstream direction
in comparison to the development on the circular cone. But if Mach number, ad-
verse pressure gradient, streamwise wall curvature, or unstable Gortler vortices are
responsible for this behavior is unclear.

Elliptical Cone

Kimmel et al. (1997) performed precursor simulation of flows over cones with three
different elliptical cross sections before starting their experiments (c.f. Kimmel et al.
(1999)). Their eccentricities were 1.5: 1, 2: 1, and 4 : 1. Due to the large amplitude
growth on the centerline close to the nose of the cone with the 4 : 1-cross section,
early transition on-set was observed influencing transition on the shoulder of the cone.

Because breakdown mechanisms cannot be easily distinguished for this configuration
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(4: 1), they excluded this geometry from their experimental investigations (c.f. Kim-
mel et al. (1999)). Martin et al. (2000) tested the subgrid-scale turbulence model
in comparison with DN S results. Follow-up simulations performed by Martin et al.
(2001) demonstrated grid resolution requirements but no stability investigations were

performed.

1.5 Objectives and Overview

Because of the aforementioned difficulties from which experimental investigations of
hypersonic boundary layer transition suffer, many questions are left unanswered. Es-
pecially the absence of controlled disturbance input makes it harder to single out
specific wave interactions and therefore it is very difficult if not almost impossible
to draw conclusions on the physical mechanisms of the relevant breakdown scenar-
ios. Therefore, DNS are employed to identify and investigate breakdown scenarios
for high-speed boundary-layer flows over circular cones. To get an as complete pic-
ture as possible on how transition is initiated breakdown scenarios of first-mode and
second-mode waves, two-dimensional and three-dimensional (primary) waves and the
influence of steady streamwise vortex modes are studied for each geometry. How
geometrical parameters, with special focus on spanwise curvature and nose radius,
influence the stability behavior is elaborated.

To give confidence into the simulations and to assure the correct implementation
of the governing equations and numerical procedure, presented in chapter 2 and 3
respectively, a summary of performed validation cases is composed in chapter 4.
The diameter of the cone varies in downstream direction. To discuss the effects of
spanwise curvature on the hypersonic boundary layer transition and create a data
base for later comparison with the circular cone results of the investigated breakdown
scenarios, results for the flat-pate and cylinder geometry are presented in chapter 5

and chapter 6. Experimental investigations by Stetson et al. (1984) have revealed a
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critical nose radius. Numerical efforts by Rosenboom et al. (1999) and Zhong (2005)
were unable to confirm this stability feature. To further elaborate the influences of the
nose radius breakdown scenarios for the sharp cone (chapter 7), for a small (chapter
8), and a large nose radius (chapter 9) are discussed and compared with each other.

Main discoveries are concluded in chapter 10.
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2.  Governing Equations

The Navier-Stokes equations consisting of conservation of mass (continuity equation),
conservation of momentum, and conservation of total energy form the set of governing
equations for the high-speed transition investigations. Air as thermally and calori-
cally ideal gas is assumed so that the equation of state is used to close the set of
equations. This assumption limits the temperature within the flow field to below
2,000K, because, above that temperature, dissociation sets in voiding the ideal gas
assumption. Hence, the investigations are based on “cold” wind-tunnel conditions
where the adiabatic wall temperature does not exceed 1,000K. Because no further

assumptions are incorporated all non-parallel and nonlinear effects are included.

2.1 Viscosity

The fluid is assumed to obey the Newtonian viscosity law governed by the local
temperature T*. Note, that for investigations over the cone, the viscosity is computed
with the local temperature 7™ after the shock. The viscosity, depending on the

temperature 7", is constant, shows linear behavior or is obtained by Sutherland’s

Law,
o . T
pt(T*) = agz,ﬂ<r<ﬁ (2.1)
Cofgs » T'>T;
with

Ty =40.0K C, =6.8070 x 10"8Ns/m?’K
T; = 110.4K C, = 1.4458 x 10~ Ns/m2K1/?.

For the investigations presented in this work, the temperature ranges from below
110.4K to above 110.4K so that the viscosity is computed linearly in the free stream
and with Sutherland’s Law in the boundary layer. This switching of viscosity laws

causes a small discontinuity (see Figure 2.1a). Figure 2.1b shows the wall-normal
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distance where the discontinuity occurs in comparison with the boundary layer thick-
ness, the location of the generalized inflection point ys and the location of the critical
layer yo. Because the maximum amplitude of amplified disturbance waves is located
between y, and yp, the discontinuity does not influence the stability behavior (see also

chapter 4 (Code Validation)). To eliminate this discontinuity, the functions have to

0.0001 T T T T T Trotty 0.006 ! i ! T - !
8e-06 T b i ?‘*: 1104K
L / i 0005} |— 5:.
gl L 9
6e-05|- B i
= T > 0.004
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o
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(a) Viscosity with respect to fluid temper- (b) Wall-normal location of discontinuity
ature. in relation to base-flow properties.

Figiire 2.1: Sharp Cone. Ma = 7.95, Re = 3,333,333; T, = 53.35K.

be continuous and smooth, i.e. function values and their derivative at the interface

have to match. Both conditions result in the same relationship between C; and C,

Ch =2/ 0, (2.2)

so that one of the coefficients C; or Cj is still arbitrary.

2.2 Non-dimensional Equations

Non-dimensionalization of the governing equations is carried out by using a length
scale (the length of the test article in the experiments L7 ) and free-stream values of

respectively).

velocity, temperature, density, and specific heat (U3, T, p5, and C;,

For investigations of flows over cones, free-stream values before the shock are used for
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non-dimensionalization. The non-dimensionalization removes all explicit dependence
on these parameters with the exception of the temperature T*, since it is used to
calculate the viscosity (see preceding section 2.1).

To allow for the simulation of cones with circular and elliptical cross section, an
orthogonal curvilinear coordinate transformation is introduced (see Tannehill et al.
(1997)). The rectangular Cartesian coordinates (of the computational domain) are

related to the curvilinear coordinates by

z=z(&n,p)
y=y(&n, ) (2.3)
z=2z(&n,9).

The differential arc length ds can be represented in both coordinate systems— in

Cartesian coordinates simply through Pythagoras in three dimensions
ds? = dz? + dy® + d7? (2.4)
and in curvilinear coordinates with
ds® = (hy d€)? + (hadn)® + (hadp)®. (2.5)

The resulting h;-factors are listed in appendix A. Figure 2.2 illustrates the Cartesian
and the resulting curvilinear (body-fitted) coordinate systems for the cone geometry.
With the help of equation 2.5, gradient, divergence and product of vectors can be
defined and substituted into the governing equations. This transformation causes
(additional) source terms in the &-, n- and ¢p-momentum equations, and therefore
the governing equations are not strongly conservative. But the computational ef-
fort is greatly reduced compared to a (strongly conservative) generalized coordinate
transformation and therefore chosen for this investigation.

For further simplification, the Mach number Ma and the Reynolds number Re are

introduced as

* * * * L‘
Ma = Uf" - Uso . Ho= p_ooU;Log
oo (=1 Hoo
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Figure 2.2: Curvilinear coordinate transformation.

With the help of these derivations the governing equations can be sorted by their

derivatives along the coordinate axes and the so-called vector form is obtained:

ou o OhyhsE . Oh,hsF x Oh1hyG
Ot  hyhohs | O€ on Op

All vectors and coefficients for the different geometries under investigation can be

+H|=0. (2.6)

found in appendix A.
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3. Numerical Method and Simulation Setup

A spatial DN.S model is used with a fourth-order Runge-Kutta method for time-
advancement and “fourth-order” split finite differences in the z- and y-directions.
However, an analysis of the modified equation indicates that this spatial discretiza-
tion is formally only third-order accurate (see Harris (1997)). In the z-direction, a
periodic solution is assumed and, consequently, a Fourier transformation is applied.
Variables are symmetric over one-half of the spanwise wavelength (except for w, which
is antisymmetric over this distance), thus only half a wavelength in the z-direction
needs to be computed. For the conical/cylindrical geometries, the “wavelength” is the
azimuthal angle ¢, which has to be an integer fraction of a full circle. For the cylinder
and circular cone, different sizes of the cross-sectional wedge can be computed (for
this work the wedge ranges from 27/8 to 27/24). But for simulations of an elliptical
cone, half the cross section (¢ = 7) has to be chosen because only two symmetry
planes, i.e. one along the vertical and the second one along the horizontal centerline
are present. The numerical method is explained in detail in the dissertation of Harris

(1997).

3.1 Initial Condition

To obtain an initial condition (IC) precursor simulations are performed with a for-
mally second-order accurate Total Variation Diminishing (T'V D)-upwind scheme. In
these simulations the entire flow field including the conical shock wave is computed
(as can be seen in Figure 3.1). Thus exact consistency with the experimental set-up,
e.g. influences of the nose radius, is achieved. Because the TV D-upwind scheme is
very robust, so it is capable of capturing the shock, it is for the same reason not
suitable for boundary-layer transition simulations. Hence, a two-step procedure is

employed where the domain of interest is extracted from the precursor simulation
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(a) Ry =3.81-10"°m. (b) Ry =1.78-10"%m.

Figure 3.1: Initial condition.
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Figure 3.2: Schematic of transferring data from the precursor simulation to the com-
putational domain for transition investigations.

and serves as an initial condition for the investigations of stability and transition.
This procedure is schematically depicted in Figure 3.1. Because the domain of inter-
est is a smaller sub-domain of the entire flow field, high resolution can be achieved

for accurate investigations of stability and transition.

3.2 Computational Domain

The domain, on which the boundary-layer transition simulations are performed, is
illustrated in Figure 3.3. The domain starts at z;, and ends at z,, covering the
region of interest from a transitional point of view. The upper limit of the domain
remains below the shock allowing the usage of more accurate and efficient numerical
schemes. Disturbances are introduced through a slot located between z, and z,. A

more detailed description of the disturbance generation can be found in section 3.7.
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Figure 3.3: Computational domain.

3.3 Inflow Boundary Condition

At the inflow boundary, all values are fixed using the initial solution (from the precur-
sor simulation or from the similarity solution for flat-plate and cylinder investigations)
with the exception in the subsonic region close to the wall where the pressure is com-

puted by
o _
ot

Because the temperature 7" and the density p are fixed, the equation of state is violated

0. (3.1)

in this subsonic region. However, upstream-traveling sound waves are allowed to pass
through the boundary with only weak reflections. This allows the disturbance slot to

be located close to the inflow.

3.4 Free-Stream Boundary Condition
3.4.1 For the Base Flow

A boundary condition based on characteristics after Thompson (1987) is implemented
with an additional term which determines the reflectivity of the boundary condition
after Kim & Duck (2000). Thompson (1987) assumed an inviscid flow at the boundary

of the domain which can be diagonalized in wall-normal direction. The governing
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equations (2.6) with 4 = 0 are translated to primitive variables p, u, v, w, p and

eigenvalues \; with related eigenvectors of the matrix Q in equation (3.2) are found.

U _F
o tQ5 +C=0, (3.2)

where C contains the summation of the source terms, £-, and p-derivatives. If A < 0,
the wave is incoming and A > 0 represent outgoing waves. For the slender cone
geometries under investigation the free stream is a subsonic inflow with only one of the
five waves traveling outward. For the outgoing wave, properties can be computed from
grid nodes within the domain while for the incoming waves boundary conditions have
to be modeled. Therefore, an ambient state from the initial condition is stored and
used to extrapolate properties for the incoming waves with regard to the surroundings.
This is a valid approach because the correct streamwise and wall-normal gradients are
already known from the initial condition (precursor simulation). Hence, no further
models are needed to simulate the boundary condition. The scheme to compute the
free-stream boundary condition is so far second order accurate. A more detailed
mathematical derivation and description can be found in the literature of Thompson

(1990) and Kim & Duck (2000).

3.4.2 For the Disturbance Flow

An exponential decay condition is applied when disturbances are introduced. The
total flow approaching the free-stream boundary is split into a steady (base flow) and
an unsteady part (disturbances). While the steady part is fixed, disturbances are
assumed to decay exponentially in wall-normal direction. Although the Mach wave
emanating from the disturbance slot and hitting the free-stream boundary travels
along a characteristic, the exponential decay condition results in lower domain heights
without influencing the disturbance waves inside the boundary layer. Therefore, the

computational domain for the transition investigations can be placed closer to the
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nose of the cone using this boundary condition. Further discussion is provided in

Thumm (1991) and Terzi (2004).

3.5 Outflow Boundary Condition

Assuming that a small-amplitude sinusoidal wave hits the outflow, the condition
74
%‘2 = - (3:3)
allows the disturbance waves to pass the boundary with minimal reflections. Experi-
ence has shown that treating the outflow boundary by applying
&
€2

to all conservative variables works equally well unless ¢ < 0, or if |¢| is near zero.

=0 (3.4)

Therefore, a buffer domain is used for nonlinear disturbance calculations where dis-
turbances are ramped down and the base flow is recovered. The length of the outflow
ramp should be about two wavelengths of the largest high-amplitude wave under

consideration in order to minimize upstream effects of this boundary condition.

3.6  Wall Boundary Condition
3.6.1 For the Base Flow

An adiabatic, no-slip, no-penetration wall boundary condition is applied. Hence, all
velocity components are zero at the wall. In order to simulate a wall without heat

transfer a Neumann condition is applied to the temperature:

or _
on

The wall pressure pq; is calculated from the wall-normal momentum equation. This

0. (3.5)

equation, as derived from equation (2.6), in the y-direction is

%(hlh;;p) = pg%nll—a = —h1h2h3%§2 + ‘é%(hzh;;Te,,) = %[hlh;; (p‘U2 = T,,,,)] i %(h]hgﬂ,‘p)
+h3’7’5n%’l{2 + thﬂ‘P%’g == hgTEE%’:,l = th‘p(p%f:’l
(3.6)
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Since the base flow is steady, the time derivative term in the momentum equation is

Zero.

3.6.2 For the Disturbance Flow

All velocities are still zero except for the v-velocity in the region where disturbances
are introduced through the blowing and suction slot (see Figure 3.3). The time
derivative in the momentum equation for the perturbed flow cannot be neglected

over the disturbance slot. Instead is computed with

Opv dp ov

_—

T T + Po (3.7)
The term 0p/0t is computed with the continuity equation and the term dv/dt is
analytically computed from equation (3.8). The wall BC for the temperature switches
from adiabatic to isothermal because the temperature fluctuations are too “fast” to

influence the wall temperature. This way, the physics of a wind-tunnel flow are best

captured due to the inertia of the wall regarding high-frequency disturbances.

3.7 Disturbance Generation

Harmonic disturbances are introduced by periodic blowing and suction through a
slot in the wall, located about one T'S wavelength downstream of the inflow (see
Figure 3.3). All other boundary conditions are not affected. Note, that the pressure
boundary condition (equation (3.6)) is valid for a non-zero wall-normal velocity. The

perturbed velocity v is given as
v(§,t) = A(t)vp(§) sin(wt — @), (3.8)

which is a harmonic function with (disturbance) frequency w and time-dependent
amplitude A(t). In this study, the amplitude is ramped up over the first period

beginning at ¢t = 0 with and held constant subsequently. In addition, no mass flux
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is going into the flow due to the prescribed spatial disturbance profile v,(z) which is
a fifth order polynomial simulating a dipole so that predominantly vorticity modes
are excited. For generating steady longitudinal vortices, steady forcing through a
monopole after Meitz (1996) is applied in the v-velocity over the same disturbance
slot as used for the harmonic forcing. Although no mass flux is globally introduced
into the flow, the base-flow profiles change locally depending on the disturbance

profile.
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4. Code Validation

4.1 Flat Plate

The code originally developed by Harris (1995) to investigate plane supersonic wakes
has been intensively tested for various applications over the past years. Terzi (2004)
investigated subsonic backward-facing steps and implemented to that end several
turbulent models. Husmeier (2002) investigated the non-parallel effects of a super-
sonic boundary layer at Mach 3, while Mayer (2004) studied the effects of adverse
streamwise pressure gradients at Ma = 3. Zengl (2005) concentrated on the oblique
subharmonic resonance at Mach 3 as discovered in the Mach 2 experiments by Kosinov
et al. (1994). Mayer et al. (2007) performed in-depth comparison with experimental
measurements by Kosinov (2006), further validating the accuracy of the code and its
capability to capture flow conditions and instabilities present under wind-tunnel con-
ditions. Please refer to the latter references for validation cases with LST and exper-
imental data at moderate supersonic speeds. Based on its excellent performance, this
code was chosen for the numerical investigations of transition at hypersonic speeds.
Because no validation at hypersonic speeds was performed in our group so far, a brief
comparison of a flat-plate boundary layer at Mach 6.8 is presented before further
validation cases are discussed for conical geometries in the following section.

To this end, the stability behavior of a small-amplitude two-dimensional second-
mode wave is compared with LST. The physical parameters for the computational
setup are chosen to match “cold” wind-tunnel conditions (c.f. Stetson et al. (1983)),
i.e. the Mach number is 6.8, free-stream temperature and pressure are 71K and
415.56 Pa, respectively. The wall is assumed to be adiabatic with isothermal distur-
bances. The domain of interest (red line) is graphed in the stability diagram (see
Figure 4.1a) at a frequency of FF = 8 - 107°, which is chosen because a region of

highest amplification is passed. The amplitude is chosen to be A; 9 = 0.01% in order
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to exclude nonlinear effects and therefore better compare with LST. Effects of the
growing boundary layer (non-parallel effects) are still simulated in the DNS which
are also neglected for the LST (c.f. section 1.3.1). Across the unstable region, Figure
4.1b shows good agreement of the amplification rates obtained by DNS with LST
once the wave has developed downstream of R, = 1,400. The deviation of the DN S
from LST is small and within the margin of other publications (c.f. e.g Thumm
(1991) or Eifler (1995)). Therefore it is believed that the correct stability behavior

is simulated.

0.001—y T T T

30001}

0002+ |

& 0060 400 »gm 800 7000
(a) Linear Stability Diagram. (b) Amplification rate plot.

Figure 4.1: (a) Linear stability diagram for two-dimensional waves at Ma = 6.8,
Tw = 71K, adiabatic wall. (b) Amplification rate comparison of DNS with LST at
F=8-10""

4.2 Sharp Cone

To verify the implemented coordinate transformation, numerical results are compared
with experimental measurements and other numerical investigations. The compari-
son of base-flow profiles with experimental measurements (c.f. Stetson et al. (1983))
in Figure 4.2a shows an overall close agreement. The insert in Figure 4.2a compares

experimentally measured and computed boundary-layer thickness ¢ because it is used
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to normalize the ordinates in the graphs of Figure 4.2. The discrepancies with the
experimental data might be due to the uncertainties in the measurements considering
the excellent agreement between the base-flow profiles from our simulations and from
those performed by Pruett et al. (1995) and Fezer & Kloker (2004) (c.f. Figure 4.2b).
As seen from Figure 4.3, good agreement is also achieved for the growth rates of small-
amplitude disturbance waves. The amplification rate based on maximal temperature
disturbances of a second-mode two-dimensional wave lies within a few percent of the
PSE results by Chang & Malik (1993b) and the DNS results by Fezer & Kloker
(2004) validating our numerical simulations. It is hypothesized that the two DNS do
not match each other exactly because of the different methods of how the base-flow
quantities are derived. Fezer & Kloker (2004) use a Mangler transformation of a flat-
plate similarity profile, which neglects spanwise curvature effects, and superpose an
Euler solution to obtain the streamwise gradients. As stated in section 3.1 the whole

flow field is simulated without those assumptions for the current investigations. For
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(a) Experiments (c.f. Stetson et al. (1983)) (b) Simulations (c.f. Pruett et al. (1995);
at R, = 2048. Fezer & Kloker (2004)) at R, = 1742.

Figure 4.2: Base-flow comparison. Ma = 7.95, Re = 3, 333,333, T, = 53.35K.

a further validation the wall pressure distribution for second-mode two-dimensional

waves is compared with experimental measurements in Figure 4.4, including different
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Figure 4.3: Two-dimensional amplifica-
tion rate compared with results from
Fezer & Kloker (2004) and Chang & Ma-
lik (1993a). Ma = 7.95, Re = 3, 333, 333,
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Figure 4.4: Wall pressure distribution
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